پیش بینی نرخ خوردگی با استفاده از شبکه های عصبی مطالعه موردی: سیستم های بالاسری تقطیر نفت خام

نویسندگان

محمود البرزی

استادیار گروه مدیریت صنعتی دانشگاه آزاد اسلامی، واحد علوم تحقیقات تهران، ایران سید امیر رضا ابطحی

دانش آموخته کارشناسی ارشد مدیریت صنعتی از دانشگاه آزاد اسلامی واحد علوم تخقیقات تهران، ایران

چکیده

هدف این تحقیق پیش بینی نرخ خوردگی با استفاده از شبکه های عصبی مصنوعی می باشد. خوردگی پدیده ای است که به علت تاثیر عوامل مختلف و متعدد شناخته شده و ناشناخته پیچیدگی بسیار زیادی دارد و به راحتی قابل مدلسازی نیست. جهت پیش بینی و مدلسازی خوردگی در رویکرد مکانیستیک به واکنش ها و فرایندهای فیزیکی، شیمیایی، و الکتروشیمیایی آن توجه می شود و مدلسازی بر اساس آنها انجام می پذیرد. با وجود موفقیت هایی که این مدل ها داشته اند لیکن به علت تعدد عوامل تاثیر  گذار که بعضا ناشناخته نیز هستند نیاز به مدلهایی که با دقت بیشتری این پدیده را مدلسازی و پیش بینی کنند احساس می شود. در این تحقیق برای پیش بینی نرخ خوردگی از مدل شبکه عصبی مصنوعی با بهینه سازی ژنتیک استفاده گردیده است. از بین مدل های مختلف شبکه عصبی شبکه عصبی چند لایه با الگوریتم یادگیری کاهش گرادیان انتخاب شده است. پس از ایجاد شبکه، فرایند آموزش شبکه با داده های موجود در یک پالایشگاه نفت مورد تحقیق انجام شد و سپس ارزیابی و آزمایش صورت گرفت. پس از آماده شدن شبکه جهت استخراج دانش از روش تحلیل حساسیت و الگوریتم گارسن استفاده شد. نتایج تحقیق نشان می دهد که روش شبکه عصبی توانایی پیش بینی نرخ خوردگی را با ضریب همبستگی و خطای mse قابل قبول دارد. بخش دیگری از نتایج که برگرفته از روش تحلیل حساسیت هستند نشان دهنده میزان تاثیر هر کدام از پارامترهای نفت خام بر روی خوردگی می باشد. طبق این نتایج نمک و گوگرد تاثیرگذارترین عوامل بر روی خوردگی در پالایشگاه مورد تحقیق هستند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی قیمت نفت خام وتعیین سطح تولید بهینه با استفاده از الگوی تکاملی شبکه های عصبی و تعادل نش

در اقتصاد جهان، نفت خام در کنار گاز طبیعی و زغال سنگ یکی از منابع استراتژیک انرژی است و پیش‌بینی روند تقاضای آن جهت اتخاذ سیاست‌های مناسب، مورد توجه سیاست‌گذاران و تصمیم‌گیرندگان است. نظر به روند پر نوسان و غیرخطی عرضه و تقاضای نفت خام و قیمت آن، روش‌هایی هوشمند و غیرخطی خصوصاً شبکه‌های عصبی مبتنی بر الگوهای تکاملی، توانسته‌اند توانایی خود را در پیش‌بینی کوتاه‌مدت قیمت نفت خام به اثبات برسانند. ...

متن کامل

خوردگی در ناحیه بالاسری ستون تقطیر آتمسفری نفت خام

خوردگی درصنعت نفت از دیرباز موجبات تخریب وسایل و تجهیزات مورداستفاده نتیجه صرف هزینه های هنگفت درخصوص تعمیر و تعویض آنها رافراهم آورده است . مطالعات و تحقیقات دامنه داری درزمینه های خوردگی درشرایط خاص حاکم برقسمتهای مختلف یک پالایشگاه انجام پذیرفته که براساس آنها روشهای حفاظت درمقابل خور تعیین و بکارگرفته شده است .ازجمله قسمتهائی که همواره درمعرض خوردگی شدیداست" ناحیه بالاسری ستون تقطیر اتمسفری...

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

متن کامل

پیش بینی نرخ نفوذ tbm با استفاده از روش شبکه عصبی مصنوعی(مطالعه موردی مترو تبریز)

امروزه ماشین‎های تونل‎بری tbm‎ (tunnel boring machine) بطور وسیعی در حفر تونل‎ها بخصوص تونل‎های شهری استفاده می‎شوند. این ماشین‎ها بر اساس روش نگهداری سینه کار و دیواره های تونل، دارای انواع مختلفی می باشند. یکی از انواع این ماشین ها، سپرهای تعادلی فشار زمین epb (earth pressure balance) می باشد که جهت حفاری خط 1 متروی تبریز مورد استفاده قرار گرفته است. عوامل مختلفی نظیر شرایط زمین‎شناسی، خصوصیا...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مطالعات مدیریت صنعتی

جلد ۴، شماره ۱۳، صفحات ۴۱-۶۶

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023